SOME THINGS TO KNOW ABOUT HIV

When you test positive for HIV, it means that you have the human immunodeficiency virus. This is a virus that attacks white blood cells called CD4+ cells (also known as T-cells).

CD4+ cells are a vital part of your immune system. They are important because they help you fight viruses and bacteria.

HIV is a virus that multiplies as fast as it can. Untreated, HIV can produce billions of new viruses every day. But HIV cannot multiply on its own; it must use healthy CD4+ cells to do that. As HIV multiplies, it destroys CD4+ cells. In this way, HIV can overpower your immune system.

Important numbers to know

CD4+ cell count: shows how well your immune system is working

Viral load: shows the amount of HIV in your blood

Your goals in fighting HIV:

- + To increase your CD4+ cell count
- + To reduce your viral load

You should have your CD4+ cell count and viral load measured every 3-6 months.

One factor that may contribute to starting HIV therapy is when a CD4+ cell count is 500 cells per cubic millimeter of blood or less.

A COMBINED ATTACK ON HIV

The US Department of Health and Human Services (DHHS) recommends an HIV regimen, also known as antiretroviral therapy (ART), to treat HIV.

An ART regimen is a combination of 3 or more drugs from two different drug classes. \lor

Types of HIV drug classes:

Fusion inhibitors and entry inhibitors

· help shield the CD4+ cell by blocking HIV from entering it

Nucleoside reverse transcriptase inhibitors (NRTIs)

 also called "nukes," create fake building blocks that stall HIV from copying itself

Non-nucleoside reverse transcriptase inhibitors (NNRTIs)

 also called "non-nukes," bind to and disable the reverse transcriptase protein that HIV needs to replicate

Integrase inhibitors

 help prevent virus replication by disabling the integrase protein so it can't put the virus' genes into the CD4+ cell

Protease inhibitors (PI)

 interfere with HIV's ability to copy itself by disabling the protease protein in the CD4+ cell